Inertial effects in the anomalous dielectric relaxation of rotators in space.

نویسندگان

  • William T Coffey
  • Yuri P Kalmykov
  • Sergey V Titov
چکیده

The linear dielectric response of an assembly of noninteracting linear (needlelike) dipole molecules (each of which is free to rotate in space) is evaluated in the context of fractional dynamics. The infinite hierarchy of differential-recurrence relations for the relaxation functions appropriate to the dielectric response is derived by using the underlying inertial fractional Fokker-Planck (fractional Klein-Kramers) equation. On solving this hierarchy in terms of continued fractions (as in the normal rotational diffusion), the complex dynamic susceptibility is obtained and is calculated for typical values of the model parameters. It is shown that the model can reproduce nonexponential anomalous dielectric relaxation behavior at low frequencies (omega tau< or =1, where tau is the Debye relaxation time) and the inclusion of inertial effects ensures that optical transparency is regained at very high frequencies (in the far infrared region) so that Gordon's sum rule for integral dipolar absorption is satisfied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertial effects in anomalous dielectric relaxation.

The inertia corrected Debye model of rotational Brownian motion of polar molecules is generalized to fractional dynamics (anomalous diffusion) in the context of the fractional Klein-Kramers equation. The fractal generalization of the Gross-Sack solution for the complex dielectric susceptibility chi(omega) for an assembly of fixed axis rotators is given. The high-frequency behavior of chi(omega)...

متن کامل

Inertial effects in anomalous dielectric relaxation of symmetrical top molecules.

The linear dielectric response of an assembly of noninteracting symmetrical top molecules (each of which is free to rotate in space) is evaluated in the context of fractional dynamics. The infinite hierarchy of differential-recurrence relations for the relaxation functions appropriate to the dielectric response is derived by using the underlying inertial fractional Klein-Kramers equation. On so...

متن کامل

Fractional rotational diffusion of rigid dipoles in an asymmetrical double-well potential.

The longitudinal and transverse components of the complex dielectric susceptibility tensor of an assembly of dipolar molecules rotating in an asymmetric double-well potential are evaluated using a fractional rotational diffusion equation (based on the diffusion limit of a fractal time random walk) for the distribution function of orientations of the molecules on the surface of the unit sphere. ...

متن کامل

Anomalous diffusion and dielectric relaxation in an N-fold cosine potential.

The fractional Klein-Kramers (Fokker-Planck) equation describing the fractal time dynamics of an assembly of fixed axis dipoles rotating in an N-fold cosine potential representing the internal field due to neighboring molecules is solved using matrix continued fractions. The result can be considered as a generalization of the solution for the normal Brownian motion in a cosine periodic potentia...

متن کامل

Transparency of overdense plasma with V shape density profile

In this study, we investigate the transparency of an overdense inhomogeneous plasma slab. This anomalous transmission is achieved when the conditions provided for the incident electromagnetic wave to excite coupled surface waves on the both sides of the slab. These conditions require that the homogeneous overdense plasma, or the metallic film, is placed between two dielectric layers. Here, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 65 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002